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Steady convective motions in a Boussinesq fluid with an unstable thermal and stable 
salinity stratification are investigated in the case that the ratio of diffusivities 
r 5 Ks/KT < 1. Using perturbation theory, it is shown that, for any value of the salt 
Rayleigh number R,, finite-amplitude convection can occur a t  values of the Ray- 
leigh number RT much less than that necessary for infinitesimal oscillations, provided 
only that r is sufficiently small. A simple qualitative argument is used to show how 
Rmfn, the minimum value of R, for steady convection, varies with R,, and it is shown 
that the analytical results of the present paper form a natural complement to the 
numerical ones of Huppert & Moore (1976). Results are presented both for stress-free 
and for rigid boundaries, and applicability of the method to other related problems 
is suggested. 

1. Introduction 
The phenomenon of double-diffusive convection in a fluid layer, where two scalar 

fields (such as heat and salinity concentration) affect the density distribution in a 
fluid, has become increasingly important (and widely studied) in recent years. The 
classical BBnard problem, with no salt, was first treated by Rayleigh (1916) and 
laminar convection is now well understood. The variety of behaviour in the double- 
diffusive case is much greater than that for the BBnard problem. Linearized stability 
theory (Baines & Gill 1969) shows, in particular, that the first occurrence of instability 
can take the form of oscillations rather than direct convection if the component 
with the smaller diffusivity is stably stratified, provided that R, (a dimensionless 
measure of this stratification) is sufficiently large. Finite-amplitude convection was 
discussed by Veronis (1965, 1968). He showed that when oscillatory convection was 
possible there was always an unstable branch of steady solutions bifurcating from the 
static state a t  larger values of R, (a measure of the destabilizing gradient of the 
larger diffusivity component). He then used a truncated Fourier series representation 
of the solutions to obtain a guide to the finite-amplitude behaviour of the steady 
solution branch. The results suggested that steady motion at  finite amplitude could 
occur a t  values of RT much less than that predicted by linearized theory. Indeed, 
within the context of the modal expansion the minimum value Rmin of RT for which 
steady solutions are possible is always less than R,, the value of RT for which the 
bifurcation to oscillatory convection occurs. (This result has been clarified by Da 
Costa, Knobloch & Weiss (1981)) who conduct an extensive numerical investigation 
of the truncated model equations.) 

More recently Huppert & Moore (1976; hereinafter referred to as HM) have con- 
ducted a comprehensive numerical study of the full equations of motion in a two- 

F L M  105 17 



508 ill. R. E. Proctor 

dimensional geometry. Among many results, they find that the sign of R,- Rmin is 
not always positive, and that in fact Rmin is less than R, only for rather special values 
of the parameters. In particular, if T = K , / K ~  (the ratio of the diffusivities of heat and 
salt) is very small (it will be recalled that only for T < 1 is overstability possible) 
then Rmin < R, for moderate values of R,. The precise nature of the criterion was not 
completely clarified, however, and in view of its importance we felt that a closer 
look was necessary, especially for very small T (which HM's numerical scheme was 
unable to treat accurately). 

In  this paper, then, we investigate the case of small T analytically, making use of 
boundary-layer analysis to describe the salt field, following Roberts (1979) .  The 
analysis proceeds similarly to that of Busse (1975) and Proctor & Galloway (1979))  
who investigated the allied problem of convection in an imposed magnetic field. It 
emerges that the key parameter in the analysis is R,T~ (for rigid boundaries, the 
relevant parameter is R,d) which must be small for the validity of the results; R, 
can still be 0(1), however, so that overstable oscillations can exist. (When R S d  is 
not small a full solution by this method is not possible, but we attempt to  show via 
a qualitative model that Rmin and R, are approximately linearly related when 
R,T* 9 1. Such a relation was in fact found by HM in their numerical study.) This 
procedure enables us to treat both stress-free boundaries (discussed by HM) and rigid 
boundaries, on which no work appears to have been done. An interesting outcome of 
the analysis (when R,d < 1) is that, whatever R, may be, steady finite-amplitude 
convection can occur a t  values of R, arbitrarily close to that necessary for normal 
BBnard convection (R, = 0 )  as K,+O with all the other parameters kept fixed. A 
similar result was found by Gough (unpublished) using a modal representation of 
convection. 

The plan of the paper is as follows. I n  $ 2  the problem is formulated, and the 
approximations that are employed are made explicit. The asymptotic analysis for 
small T is carried out in 5 3, and solution for the case of free boundaries undertaken in 
94. In  $ 5  we treat the case of fixed boundaries, and discuss the results in $6.  We 
conclude in $ 7 with a description of the qualitative model for higher values of R,. 

2. Formulation and derivation of the expansion scheme 

Boussinesq double-diffusive fluid may be written (see, for example, HM) 
The dimensionless equations describing steady two-dimensional convection in a 

ae as 
T a x  ax U-'(U.Vw) = - R  -++,- -V4$, 

u.ve = vze, (2.2) 

u. vs  = T V W ,  (2.3) 

where U(x, z )  = ( - a@/az, 0, a@/ax) in Cartesian co-ordinates (x, y, z )  and a/ay = 0. 
The layer depth is scaled with d, the velocity U with KT/d ,  where K,  is the diffusivity 

of heat. The perturbation temperature and salinity are related to the corresponding 
dimensional (starred) quantities by 

e* = T,+BAT, s* = S,+SAS. (2.4) 
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Here So and To are basic salinity and temperature values supposed to hold at  z = +, 
the mid-point of the layer, with AT, AS the difference in the temperature and salinity 
concentrations across the layer, so that at  z = 0, 1,B = S = k 4 respectively. The 
y component of vorticity o = - V2$, 

The dimensionless parameters are: 

the Prandtl number B = v1.T ; (2.5) 

the Schmidt number 7 = K S l K T  ; (2.6) 

the Rayleigh number 

g/3ASd3 
12, = - , 

KT V 
and the salt Rayleigh number 

It will be convenient to define a further parameter 

Ps = R,/T. 

Note that Ps is independent of K ~ .  The coefficients u and /3 me those that appear in 
the assumed linear density relation p = po( 1 - uBAT + /3SAS). We suppose that the 
top and bottom boundaries of the layer are either stress-free (as assumed by HM) or 
rigid, as is more likely in experiments. Thus we have, at  z = 0,  1, 

$ = $zs = 0 (stress-free), (2.10) 

$ = II., = 0 (rigid), (2.11) 

where the subscripts denote partial derivatives. 

Thus at  x = 0, k we have, by symmetry, 
We will suppose that the motion is periodic in the x direction with period 2nlk. 

(2.12) 

and these are the conditions used by HM. In order to make analytical progress, we 
shall suppose that RT = O(1) and that the Pdclet number (proportional to IUl in 
the present scaling) is small. This means that the isotherms are not greatly distorted 
from their original horizontal form in the absence of motion. The Prandtl number B 

is supposed O( I), and T supposed small (for example, T N & for water). The Ltasump- 
tions imply restrictions on the size of R, which will energe in the course of the analysis. 

$ = $xx = 0,  ex = S, = 0, 

3. The asymptotic problem when 7< 1 

It is well known that (2.1)-(2.3) allow a basic hydrostatic state, namely U = 0,  
S = 0 = 4 - z .  If R, is large enough then convective solutions (U 4 0 )  become 
possible. We will suppose that RT is such that the motions are ‘of small amplitude’ 
in the sense that the P6clet number is small. Then we can write 

u = SU,+€W,+ ..., (3.1) 
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with $2.. .defined in the obvious manner, and where the small parameter E can be 
identified with the PBclet number and U,, 8, are of order unity, The purpose of the 
analysis is to find E in terms of RT. We fix the size of E by requiring of the leading- 
order functions U,, 8, that 

It should be noted that S is not expanded in powers of E ,  since the assumption of 
small T means that S may differ significantly from the static configuration, even 
when E is small. In fact, we shall suppose that E is large enough and T small enough 
that T < G. Thus the situation we envisage is one in which the isotherms are scarcely 
disturbed (small Pdclet number), but the isopycnals (constant S) are greatly affected 
by the flow. Clearly if T is small enough there is a range of E such that 1 $ E $ T ,  and 
it is this range on which we wish to focus. 

We then define a parameter 7 = TE-1, which by our supposition is small, and sub- 
stitute (3.1)-( 3.3) into the governing equations. This procedure yields at  leading 
order 

U, .VS  = yV2S. (3-7) 

We note that the effects of finite Pdclet number do not appear in this system, since 
if the term in Psis ignored equations (3.5)-(3.6) are linear, and constitute the standard 
linearized stability problem for Rayleigh-BBnard convection with eigenvalue R,. 
The effect of finite E if Ps = 0 can be shown to result in an expansion of the form 

RT = R O + E ~ R ~ +  ..., (3.8) 

where R, is a positive constant that depends on u and the boundary conditions (see, 
for example, Malkus & Veronis 1958). Thus in the absence of salt R, increases mono- 
tonically with E for small E .  In  order to find a parameter regime in which R,  has a 
minimum as a function of E ,  we must consider additionally the effect of non-zero Ps 
on R,. If this effect is small (i.e. if Ps is not too large) then the effects of salt and finite 
PBclet number on R, can be added together, correct to leading order. All these ideas 
are in the spirit of Busse (1975), who considered the similar magnetoconvection 
problem. 

If the effects of salt are included in (3.5)-(3.7) then R,  is no longer an eigenvalue, 
but depends on Ps and on 3.  If R(0) is the eigenvalue for the non-salt problem (P, = 0), 
we suppose that the effect of the salt is small, and write 

and similarly for U,, where R(l) is independent of Pq and 7 and 6 is a small 
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0 = R(0) - + V4$(0), 
ax 

O = -  a@(o) + vze(o), 
ax 

(3.10) 

and 

(3.1 1) 

Higher-order corrections to the salt field will not be required. Thus the procedure is 
clear: (3.10a, b )  must be solved to determine the basic eigenvalue R(O) and eigen- 
functions P ) ,  $-@) (normalized as in (3.4)). '  Then So) can be calculated as a function 
of Uo, 7, and the correction R(Q to R(0) can be found by finding the solvability con- 
dition for the inhomogeneous system (3 .11) .  If we multiply ( 3 . 1 1 ~ )  by $to), (3.11b) 
by e(O) and integrate over a convective cell, we obtain 

where 

(3.13) 

l k l  
(*..) = 1 ... dxdz.  

0 0  

However, from (3.10) we obtain the relations 

and further manipulation then yields 

(3.15) 

(3.16) 

if we write S(0) = S' - z + 9 so that S' = 0 at x = 0, 1 (3.10 c )  yields finally 

6R(') = Ps Tp( 1 VX' 12). (3.17) 

Thus SR(l) is positive, and is proportional to the energy dissipation by the perturbed 
salt field S'. Equation (3.17) can be thought of as an expansion derived from the 
familiar power integral, which shows that in the steady-state buoyancy forces are 
balanced by viscous diffusion and dissipation in the salt field. Our sole remaining 
task, then, is to calculate S' from ( 3 . 1 0 ~ )  when 7 is small. Busse (1975) has provided 
numerical computations that .could be adapted to determine this quantity for all 
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Cold. fresh 

Hot, salty < kd > 

FIGURE 1. Sketch of the geometry and boundary-layer structure for the two-dimensional 
thermohaline problem a t  low e ,  7. The left two cells show the region in which the salinity differs 
from its mean value, and the third shows the isotherms. 

values of q :  however, we can produce solutions in the rigid-boundary case using 
analytical techniques, and the same methods yield approximate answers in the free- 
boundary case that are valid to within a few per cent. The boundary-layer analysis 
also gives information on the magnitude of any terms neglected in the analysis. 

When q is large in (3.10c), it is clear that far from any boundary, when length 
scales are 0(1), diffusion can be neglected. Thus in these regions U(5).VS0)2: 0, so 
that 

SCO) = g o )  (p)). (3.18) 

It can then be shown by integrating around each closed streamline of the flow that 
in fact So) is constant in the interior, and by symmetry S O ’  = 0 there. This interior 
solution does not satisfy the boundary conditions at z = 0 , l  and so there is a boundary 
layer round the edge of the cell whose nature depends on the boundary conditions 
(figure 1) :  we tseat the free-boundary case first. 

4. The free-boundary problem 
It is easily shown, for example by comparison with thework of Roberts (1979), that 

the appropriate boundary-layer thickness is O($)  a t  both the horizontal and vertical 
boundaries. For the vertical layer a t  x = 0, for example, we define 

6 = xy-:, t; = O( 1), ?p N & $ ( x )  (4.1) 

then the equation ( 3 . 1 0 ~ )  may be written 

where the prime denotes differentiation with respect to z. This equation is t o  be 
solved with the boundary conditions that aSn)/at = 0 a t  t = 0, S 0 ) - + O  as t+cc 
and some condition a t  z = 0 that depends on the horizontal boundary layer there. 
Although this equation cannot be solved exactly, i t  can be used to deduce some 
results that elucidate the function of the boundary layer, and show how the global 
energy balance described in the last section is actually effected by local force balances. 

We may readily deduce from (4.2), following Roberts (1979), that  

$ ( z ) j m ~ ( o ~ a z  0 = const. = 47, say. (4.3) 
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The term on the left-hand side is equal to 74 times the flux of salt through the left- 
hand vertical plume as a fraction of the flux that is conducted when there is no motion. 
At leading order all the flux is advected through the vertical boundary layers, with 
diffusion playing a negligible role. Since there are two plumes, both transporting 
salt upwards, the total 'salt Nusselt number' is y7-4 and must equal the conductive 
salt flux at  the boundary. Indeed, from ( 3 . 1 0 ~ )  we have 

and this constant must be y$ from (4.3). Thus a t  x = 0, 

This flux can again be simply related to the quantity (lVS'12) that determines R(l). 
Since S O )  = X ' - x + g  and (from ( 3 . 1 0 ~ )  again) 

Thus we see immediately that SR(l) = Ps$yk-l and the only remaining task is to 
calculate y.  It follows further from (4.7) that only the distribution of S(O) in the hori- 
zontal boundary layers need be considered, and this leads us to an approximate 
solution procedure. 

Near x = 0, say, we may write 

2 = 74x, x = O(l), $(O) r l * X f ( 4  (4.8) 

and then (3.10 c )  becomes, to leading order, 

with the boundary condition X(O) = 4 at = 0, and (by symmetry) asfax = 0 at 
x = Ic ,  where the sign of $(O) is chosen so that fluid is flowing towards the plane z = 0 
a t  x = E .  Another boundary condition is needed as x-foo. Clearly, S o ) - f O  as x-fm 
except in the neighbourhood of x = k, where a vertical salt plume impinges. If we 
ignore the effect of this plume, a similarity solution exists in the form 

S(0) = + erfc ( q ) ,  
(4.10) 

g(x)  dx = 77-4 ( j I . f ( X )  ax)*. (4.11) 

Now for two-dimensional rolls bet#ween free boundaries, the eigenfunctions $(O), 8 (O)  
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may be calculated explicitly (e.g. Chandrasekhar 1961): we find, using the normaliza- 
tion (3.4), that 

\ $(O) = c sin nz sin ax, 

I ca 
/ yo )  = - sin nz cos ax, 

a2 + n2 

I R(0) = (a2 + n2)3/u2, 

a = n/k ,  c2 = 4(a2+772)/a? 
Thusf(x) = cnsin (nx/k) and so 

y = (y. 

(4.12) 

(4.13) 

The last relation gives a guide to the behaviour of y as a function of k ,  but it is only 
an approximate solution which underestimates the true dissipation. A direct com- 
parison with numerical results is possible in the case k = 1, since in that case the 
calculation carried out by Busse (1975) for convection in a magnetic field involves 
the determination of a function (go(x, z )  + x) which is determined by an equation 
that is identical (apart from a rotation through 4.) to (3.10~).  The quantity E(A*) - 1, 
where A* = cv-l in the notation of the present paper, is equal to (~VAS’’~~), and for 
large A* Busse finds 

E(A*)-  1 N 1*065A*$, A*-+w. (4.14) 

Thus the exact result for k = 1 is 
y = 1*065~$ (4.15) 

instead of the approximate value y = (2c/n):given by (4.13); the 20% error is rather 
encouraging given the simplicity of the calculation, and presumably the accuracy 
would be even better for cells that  have k > 1, since there would be less dissipation 
in the vertical plumes. 

From (3.17) and (4.7) it is clear that  6 = P,$ and we therefore choose Ps so that 
Ps$ = O(G)  or 

R, T& = O(E$). (4.16) 

Note that we only require that T < E ,  and so, for any R,, there is a sufficientlysmallr 
for which (4.16) can be satisfied. From Busse, we have that the effect of finite PBclet 
number can be expressed (in our notation) in the form 

(4.17) 

Thus for Rsd N €3 the expansion for RT as a function of E is 

R T -  - R(O) + s2R, + E - ~ R ,  d y k - ’ ,  (4.18) 

where y depends only on k. The consequences of this expression are investigated in 
$6. It is of course important to discover the leading-order corrections to (4.18) so as 
to  determine the size of its domain of validity, and this entails solving the momentum 
equation in the boundary layer to show how the velocity field changes as a result 
of the horizontal salinity gradients. These questions are dealt with in the appendix. 
The conclusions obtained there are that the error in (4.18) is of the order of max (e4, E%$). 
I n  the next section we treat (in rather less detail) the case of rigid boundaries. 
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5. The expansion for rigid boundaries 
In  this case the thickness of the vertical plumes is still but the smaller velocities 

near z = 0, 1 mean that the layers there are of thickness O($).  For example, if near 
z = 0 we set 

x = q-% x = O(l) ,  +‘O)(x, 4 *rlQxZC(x) (5-1) 

then the leading-order equation for So) in this region is 

It is then easy to see that the conductive salt flux at  z = 0 is 

Now this flux is advected upwards in the vertical plumes a t  x = 0, k, as for the free 
boundary case. However, the plumes are of thickness O($) and so in these regions 
So) has only to be of order yk in order to transport the flux (5.3). Thus the plumes can 
be neglected, both in their effect on the horizontal layers and in their contribution 
to the total dissipation. Hence the similarity arguments that were only approximate 
in the free-boundary case are here asymptotically exact. 

Equation (5.2) has the following similarity solution satisfying all relevant boundary 
conditions: 

Now [(x) = hsinax for some h(a) (Chandrasekhar 1961) and so the infegral can be 
evaluated to yield 

for a = m/k = 3.117 (corresponding to the minimum of R(O) = 1707.76), h = 10.76 ... 
(from numerical calculation) and p = 0.627. When p is known, we have that 
6Rm = PS$pk-1 so at leading order the expansion of R, is 

R T -  - R(O) + e2R2 + &Rs d/5’lC-1+ . . . (5.7) 

(5 .8 )  

and the conditions for the validity of this expression are that 
11 R S d ~  ~ a - .  

The value of R, (which now depends on v) is not known as a function of k in the rigid 
boundary case. It can, however, be shown to be positive. 



516 M .  R. E. Proctor 

6. Interpretation of results and discussion 
The asymptotic results obtained in previous sections allow us to determine the 

minimum value (Rmin) of RT for which steady convection is possible a t  given R,. 
This value is correct to leading order if RS7* < 1 (free boundaries) or RS7% < 1 (rigid 
boundaries). In  the free-boundary case we have (from (4.19)) 

and the value of B ( = emin) for which this value of RT occurs is given by 

(6.2) €2 . = 4s2 

where E ,  is the value of e that would have been obtained a t  that value of R ,  in the 
absence of salt (R,  = 0). Equation (6.2) shows plainly that the minimum in the 
(RT,  6) curve occurs in a region in which the theory is valid. It is instructive to re- 
arrange (6.1) to obtain the largest value of R, compatible with steady convection 
for given RT - R(,). We have 

min 7 0, 

R, 5 [+(RT - R(0))]zRg (g)-'7-*, (6.3) 

and this shows clearly that, as 7 -+ 0, R, can be arbitrarily large and convection remain 
possible. In  particular, convection can occur arbitrarily close to RT = R, provided 
that K,+O with all the other parameters kept fixed. This is an important qualitative 
difference from the rather similar problem (at least in the weakly nonlinear regime) 
of convection in the presence of a magnetic field treated by Busse (1975), where R(O) 
cannot be approached arbitrarily closely, whatever the differences between the 
diffusivities of temperature and magnetic field may be. 

I n  the rigid boundary case the restrictions on R, are even less severe. By analogy 
with (6.1), (6.2), (6.3) we have from (5 .6)  

All these calculations are irrelevant, of course, unless it can be shown that there 
is a range of values of R, for which oscillatory convection is either impossible or 
unstable for RT < Rmin. Unfortunately we have not been able to solve for the non- 
linear oscillatory solutions analytically a t  finite amplitude, even when 7 < 1. We 
can, however, examine the linearized stability problem and the first nonlinear exten- 
sion of it. We restrict our attention to free boundaries, for which the formulae involved 
take a relatively simple form. Linear theory tells us that, for infinitesimal oscillatory 
motions to be possible, 
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and this is clearly much larger than Rmin provided that a is not too small. (We recall 
that for roll instabilities between free boundaries R2 is independent of a.) For 
hexagonal-type instabilities (not discussed here), R, N a-2 for a+ 0 :  the analogue of 
(6.1) in this case is not known, but we expect Rmin to decrease as c decreases and the 
outcome of the competition is not obvious. In  spite of this, it is clear that  finite- 
amplitude steady motion can be found a t  values of RT well below the value for which 
infinitesimal oscillations are possible. 

Can finite-amplitude oscillations occur a t  a lower RT than that given by (6.7)2 
We can provide a partial answer by examining the quantity SRT defined by the 
equation 

where A is a measure of the amplitude of the oscillation. If SRT > 0, then we have 
supercritical instability and we would then be surprised if the (RT, A )  curve doubled 
back on itself. If 6RT .c 0,  on the other hand, the instability is subcritical and (6.7) 
is irrelevant. Presumably there is some minimum value of RT a t  which oscillations 
occur, but its relation to Rmin is not known. 

It is well known that, for small R,, SR, > 0. The value of R, for which 6RT changes 
from positive to negative has been given in concise form by Da Costa et al. (1981). 
From their equations (15), (17), (18), it is easily seen that the critical value R(# of 
R, is, to leading order, 

for T < 1 and c % 7. (The latter condition is necessary in any event for the validity 
of the asymptotic analysis.) The function of a appearing in the brackets in (6.9) is 
a t  least 8 and so for any value of a, 

(6.10) 

is sufficient for supercritical bifurcation of the oscillatory mode. Of course this value 
of R, is within the scope of the theory when 7+0. Thus we expect a wide range of 
R,, restricted by (6.10), in which as R, is increased the first possible instability of 
the conduction solution is to a finite-amplitude steady mode. Presumably the fixed- 
boundary problem will yield similar results, although the critical values of RT are 
not known in closed form in this case. 

7. A tentative approach for larger B, 
The analysis outlined above only applies when (in the free boundary case) 

R,7) < 1, and the minimum value of R, occurs for small E .  Huppert & Moore have 
observed the same general behaviour of the RT curve for larger values of R,; how- 
ever, in their results the turn-round occurs when e is O(1) or greater, and when not 
only the salt, but also the thermal field, are significantly changed by the fluid motion. 
They observe a straight line law of the form 

(7 .1 )  R,, = A + BR, 
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for constants A and B when R, is varied and the other parameters kept fixed. This 
differs from the relationship (6.1), and indeed no close agreement is to be expected 
since r = 0.1 for the models studied by HM and r: is not very small. However, a 
careful examination of Huppert & Moore's results (their figure 14) suggests that 
Rmin falls below the line (7.1) for small R,: so a match to a relation of the form (6.1) 
(for which Rmln is a convex function of R,) is not ruled out. 

We can construct a rough model to show why Rmin might depend linearly upon R, 
when the latter is large. We begin with the 'power integral', valid for steady solutions 
of (2.1)-(2.3), namely 

(7.2) 

It has been noted often that (at least in the two-dimensional geometry) the form of U 
does not depend much on its amplitude in the steady state. Letting the amplitude be 
represented by the parameter V ,  with some appropriate scalings, we can represent 
the viscous dissipation by the approximate relation 

RT( (VBI ') -7RS( I VSl') = (/VU I '). 

(IVU12) = V2. (7.3) 

If we suppose that r -g 1, the salt P6clet number ] U ] ~ / K ,  = O( Vr-l) is large in the 
regime of interest. We then know that (/VSI2) depends only on the thickness of the 
boundary layer, which is proportional to (V/r)-*. Thus we set 

( IVLy)  = A,r-W$, (7.4) 

(IV812) = A,V*, (7.5) 

(lV812) = B,V2-C1V4+ .... (7.6) 

(7.7) 

(7.8) 

where A ,  is of order unity. To obtain the ansatz for (lV812) we must model a greater 
range of behaviour. For large 8, 

and for small V 

A simple function of V satisfying both these requirements is 

(IV812) = E[(  1 + FV2)i  - (1 + G V2)a] ,  

where E,F,G are defined by 
32c1 E ( F 2  - G2) = - E(F2 - G i )  = A,, E ( P  - G )  = 44, 
3 .  

(Equations (7.8) cannot be satisfied for arbitrary A,,  B,, C,:  however, more com- 
plicated functions can be constructed in these cases. The results presented below do 
not depend on the function that is chosen.) Our approximate expression for R, as a 
function of R, and V is then 

V 2  + R,d V*A, R -  
- E[(  1 + P V2)i - ( 1 + G V2)2] (7.9) 

It can easily be shown that this function has all the correct power law dependencies 
in cases where the latter are known. For example, the mean field result 
(R, -r*R,) N V* holds when each side is large, and the relation (4.19) is qualitatively 
reproduced with V replacing 6. If we now seek the minimum R* of the function on 
the right-hand side of (7.9), we may expect its behaviour to resemble that of Rmin as 
a function of R,d. The minimum cannot be found in closed form for all R, 73:  for 
small R, 74 we have, from earlier sections, 

R" = P + Q[R,y~*]$, (7.10) 
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FIGURE 2. Graph of R*- R'O) found from the expression (7.9) as a function of R S T ~  (log-log 
plot). The transition from the 4/7 power law to the linear power law is shown clearly. The 
dotted lines are straight segments with the appropriate respective gradients. 

which models (6.1), where P and Q are constants. For large R,d we find that 

R* = XR,d + smaller terms, X constant (7.11) 

and this occurs for T' w (R,rf)f, or, alternatively, for a thermal Nusselt number - ( R , r f ) f .  Figure 2 shows R* as a function of RSd (log-log plot) in the simple case 
A ,  = E = F = 1, G = 0, which is not unrepresentative. The transition between the 
two power laws given by (7.10) and (7.11) is shown clearly. We could attempt to 
quantify (7.11) by trying to match the coefficients with the results of HM, but feel 
that  it would be overstretching a theory that only pretends to qualitative predictions. 

We have thus shown that the crucial requirement for subcritical steady convection 
to exist at values of R, below that for which oscillatory convection is possible is that 
K, be small (compared to K,). Indeed, convection can take place a t  values of R, 
arbitrarily close to that needed for convection when R, = 0 provided that K,+O 
with R, remaining fixed. (This result goes some way towards explaining the energy 
stability result of Shir & Joseph (1968), who show that if R, > 0 it does not appear 
in any criterion for stability based on the energy method.) The analysis resembles 
that of Busse (1975) but we elucidate the structure of the boundary layers somewhat, 
following Roberts (1979), and show how the analysis can be extended into other 
parameter ranges. A qualitative link can be established, via an approximate theory, 
with the results of Huppert & Moore for large R,d, and the problem with fixed top 
and bottom boundaries can be shown to have similar properties. 

The boundary-layer analysis makes clear the important distinction between 
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subcritical thermohaline convection and the related problem of convection in a mag- 
netic field (Busse 1975; Proctor & Galloway 1979). I n  the latter case, the magnetic 
flux is pushed into a rope or sheet that  is similar, when its dynamic effect is weak, 
to  the salt plume discussed in this paper. However, because of the nonlinear character 
of the magnetic (Lorentz) forces, the flux sheet becomes more dynamically active as 
it gets thinner, in contrast to the salt plumes in the present study. The problem of 
convection in a rotating fluid layer can also be studied (when the Prandtl number is 
small) by similar asymptotic methods and turns out to be much like the magnetic 
problem in its finite-amplitude behaviour. 

This work was begun at the 1976 Woods Hole Geophysical Fluid Dynamics Sum- 
mer School; I am grateful to the Director, Professor G. Veronis and the National 
Science Foundation for making my attendance possible. I also thank D. 0. Gough 
for showing me his unpublished modal calculations and H. E. Huppert and 
N. 0. Weiss for many helpful discussions. 

Appendix. The effect on the velocity field of horizontal salt gradients 
The analysis given in the main body of the paper is quite sufficient to obtain the 

leadini-order behaviour. If a further expansion is desired, however, i t  is necessary to 
determine explicitly the change 6U(l) in the velocity field caused by the salt field. 
Clearly the salt field only affects the motion when its horizontal gradient is large, and 
so we need only consider the vertical plumes. Near x = 0 for example the vorticity 
field w(l) can be divided into two parts: we write 

w(1) = W I  + a((, z ) ,  c = q-Jx, (A 1) 

where L3 is non-zero only in the boundary layer, and wI is the ‘internal ’ (non-boundary- 
layer) part; clearly w I + 8  = 0 a t  x = $ = 0. Then equation (3.5) can be written, a t  
leading order in the boundary layer, 

where D + 0 as 5 + a. Integrating this equation then shows that 

WI(X = 0) = -63g = 0) = - Psq%-l X(O)dt. (A 3) sum 
In  (A 2) we have neglected the boundary-layer part of the term - R(o)aO(l)/ax since 
it can be shown to be of order q2 compared to the viscous term, and therefore small. 
The vorticity field gives rise t o  a boundary-layer velocity field 0 which is of order 74 
compared to the ‘interior ’ velocity field U, and can therefore be ignored. 

Thus the leading-order correction to the velocity field (SU(1)) can be found as the 
solution to the following problem: 
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(no term in So) appears in the interior as its horizontal gradient is zero there). These 
equations are to  be solved subject to  the standard boundary,conditions except that, 
at x = 0,  the condition a2$1/ax2 = 0 is replaced (from (A 3)) by 

W 

a2$I/i.’( = + Psy4S-1J X@)dC, 
x = o  0 

and similarly a t  x = E .  Now we know from (4 .3 )  that  

and so the condition (A 5 )  becomes 

This condition is very similar in form to ones obtained by Roberts (1979) in the 
BBnard convection problem. R(I) can then be determined from a solvability condition 
in the usual way, and its value agrees with that derived earlier by an independent 
method. The techniques used in this appendix could be used even if Psy4 is of order 
unity (though no analytic solution is known in that case) since the velocity field in 
the plumes is always of ‘interior’ type a t  leading order. 

We can see, then, that the errors in the expansion we have described in the body 
of the paper are either due to finite PBclet number (s4), finite S(Pkq3), interaction of 
finite PBclet number and finite (s2Ps$) and boundary-layer corrections to the salt 
field (at most €274). All these are small compared with s2 and can therefore be neglected 
provided that s2 and P,$ are small. Similar considerations clearly hold for the rigid 
boundary case. 
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